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Abstract

Four periods of EMEP (European Monitoring and Evaluation Programme) intensive
measurement campaigns (June 2006, January 2007, September–October 2008 and
February–March 2009) were modelled using the regional air quality model CAMx with
VBS (Volatility Basis Set) approach for the first time in Europe within the framework of5

the EURODELTA-III model intercomparison exercise. More detailed analysis and sen-
sitivity tests were performed for the period of February–March 2009 and June 2006 to
investigate the uncertainties in emissions as well as to improve the modelling of or-
ganic aerosols (OA). Model performance for selected gas phase species and PM2.5
was evaluated using the European air quality database Airbase. Sulfur dioxide (SO2)10

and ozone (O3) were found to be overestimated for all the four periods with O3 having
the largest mean bias during June 2006 and January–February 2007 periods (8.93 and
12.30 ppb mean biases, respectively). In contrast, nitrogen dioxide (NO2) and carbon
monoxide (CO) were found to be underestimated for all the four periods. CAMx repro-
duced both total concentrations and monthly variations of PM2.5 very well for all the15

four periods with average biases ranging from −2.13 to 1.04 µgm−3. Comparisons with
AMS (Aerosol Mass Spectrometer) measurements at different sites in Europe during
February–March 2009, showed that in general the model over-predicts the inorganic
aerosol fraction and under-predicts the organic one, such that the good agreement
for PM2.5 is partly due to compensation of errors. The effect of the choice of volatil-20

ity basis set scheme (VBS) on OA was investigated as well. Two sensitivity tests with
volatility distributions based on previous chamber and ambient measurements data
were performed. For February–March 2009 the chamber-case reduced the total OA
concentrations by about 43 % on average. On the other hand, a test based on am-
bient measurement data increased OA concentrations by about 47 % for the same25

period bringing model and observations into better agreement. Comparison with the
AMS data at the rural Swiss site Payerne in June 2006 shows no significant improve-
ment in modelled OA concentration. Further sensitivity tests with increased biogenic
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and anthropogenic emissions suggest that OA in Payerne was largely dominated by
residential heating emissions during the February–March 2009 period and by biogenic
precursors in June 2006.

1 Introduction

Air pollution is known to cause damage to human health, vegetation and ecosystems.5

It is one of the main environmental causes of premature death. Only in Europe, more
than 400 000 premature deaths were estimated in 2011 with PM2.5 (particles less than
2.5 µm in aerodynamic diameter) having the highest relative risk for health damage
(WHO, 2014). Air quality models help understanding the processes taking place be-
tween emission sources and pollutant concentrations at receptor sites. They are very10

useful to define control strategies for future legislation. In spite of large improvements
in recent years, Chemical Transport Models (CTMs) have still some uncertainties (So-
lazzo et al., 2012). Various air quality model intercomparison exercises were success-
fully carried out over the last decades to determine uncertainties in chemical and
physical processes governing particulate matter and its precursors (Solazzo et al.,15

2012; Bessagnet et al., 2014). However, a large variability in particulate matter con-
centrations was found between different models indicating process parameterization
as one of the main reasons for such discrepancies. Moreover, recent studies based on
AMS (Aerosol Mass Spectrometer) measurements at different sites in Europe, revealed
that the organic fraction dominates the non-refractory PM1 composition (Crippa et al.,20

2014). Organic aerosol (OA) can be found in the atmosphere from direct emission
by various sources, such as fossil fuel combustion by road vehicle engines or resi-
dential wood combustion. Direct emissions of OA are typically referred to as primary
organic aerosol (POA) whereas gas-to-particle conversion is referred to as secondary
organic aerosol (SOA). Formation mechanisms of SOAs are not very well known yet25

and their representation in CTMs is still challenging (Hallquist et al., 2009; Fountoukis
et al., 2011; Bergstrom et al., 2012; Li et al., 2013; Langmann et al., 2014; Tsigaridis
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et al., 2014). In one of our recent aerosol modelling studies we compared model PM2.5
prediction with PM1 AMS measurements for different sites (Payerne and Zürich) and
periods (summer and winter) in Switzerland. We found that particulate matter was
generally well reproduced by the model with the SOA fraction being under-predicted
and POA over-predicted (Aksoyoglu et al., 2011). Traditional CTMs treat POA as non-5

volatile. Some studies however have revealed the semi-volatile nature of POA, through
its dynamic equilibrium of organic aerosol with its gas phase, and the importance of
semi-volatile (SVOC) and intermediate volatility (IVOC) organic compounds as SOA
precursors (Donahue et al., 2006; Robinson et al., 2007; Cappa and Jimenez, 2010).
To describe the absorptive partitioning and ongoing oxidation of the atmospheric ma-10

terial, a volatility basis set (VBS) where organic species are organized into surrogates
according to their volatility was developed (Donahue et al., 2011, 2012a, b). Air qual-
ity models updated with VBS scheme started being used (Lane et al., 2008; Murphy
and Pandis, 2009; Hodzic et al., 2010; Fountoukis et al., 2011; Bergström et al., 2012;
Murphy et al., 2012; Jo et al., 2013; Zhang et al., 2013; Athanasopoulou et al., 2013;15

Fountoukis et al., 2014). Bergström et al. (2012) reported an EMEP model study over
Europe for the 2002–2007 period using different assumptions regarding partitioning
and aging processes. They could not reproduce the measured OA levels in winter sug-
gesting that residential wood combustion inventories might be underestimated in differ-
ent parts of Europe. Fountoukis et al. (2014) applied the PMCAMx model to simulate20

EUCAARI (Kulmala et al., 2009, 2011) and EMEP (Tørseth et al., 2012) campaigns
in Europe. They could reproduce most of PM1 daily average OA observations within
a factor of two, with the February–March 2009 period having the largest discrepancies.
Zhang et al. (2013) deployed the CHIMERE model with the VBS framework during the
MEGAPOLI summer campaign in the Greater Paris region for July 2009. They found25

a considerable improvement in predicted SOA concentrations which might be even
overestimated depending on the emission inventory used. In our study, we applied
the regional air quality model CAMx with the VBS scheme for the first time in Europe
within the framework of EURODELTA-III model intercomparison exercise. In addition
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to the base case configuration used in the exercise, more sensitivity tests with the
VBS scheme for winter and summer episodes were performed together with a general
evaluation of the four EMEP field measurement campaigns.

2 Method

2.1 The EURODELTA-III exercise5

The EURODELTA-III (EDIII) framework is a European model intercomparison exercise
between several modelling teams sharing both efforts and technical knowledge in or-
der to reduce model uncertainties and to improve understanding of the performances.
It contributes to the scientific work of the United Nations Economic Commission for
Europe (UNECE) Task Force on Measurement and Modelling (TFMM) within the Con-10

vention on Long-range Transboundary Air Pollution (CLRTAP). In the first phase of the
EDIII exercise, 4 periods of the EMEP field measurement campaigns were chosen in
order to evaluate the model results:

– 1 June–30 June 2006

– 8 January–4 February 200715

– 17 September–15 October 2008

– 25 February–26 March 2009

Multiple models were applied on a common domain and driven with the same input
data provided by the National Institute for Industrial Environment and Risks (INERIS).
However, for some models, different meteorology, boundary conditions and emissions20

data such as biogenic emissions were used (Bessagnet et al., 2014).
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2.2 Modelling method

2.2.1 CAMx

The Comprehensive Air quality Model with extensions, CAMx-VBS (CAMx5.41_VBS,
kindly provided by ENVIRON before its public release) was used in this study. The
model domain consisted of one grid with a horizontal resolution of 0.25◦×0.25◦. The lat-5

itude and longitude grid extended from 25.125◦W to 45.125◦ E and 29.875 to 70.125◦N
resulting in 281×161 grid cells covering the whole of Europe. Hourly four-dimensional
meteorological fields for wind speed and direction, pressure, temperature, specific
humidity, cloud cover and rain required by CAMx simulations were calculated from
ECMWF IFS (Integrated Forecast System) data at 0.2◦ resolution. Vertical diffusivity10

coefficients were estimated following the Kz approach of O’Brien (1970) using PBL
depth profiles as available in IFS data. CAMx simulations used 33 terrain-following σ-
levels up to about 8000 ma.g.l. No vertical interpolation of the original IFS data was
performed. The lowest layer was about 20 m thick. MACC (Monitoring Atmospheric
Composition and Climate) reanalysis data were used to initialize initial and the bound-15

ary condition fields (Benedetti et al., 2009; Inness et al., 2013). Elemental carbon,
organic aerosol, dust and sulfate were used to model aerosol species at the bound-
aries of the domain. One half of the OA was assumed to be secondary organic aerosol
(SOA) and the other half primary organic aerosol (POA), as recommended in the EDIII
exercise. Photolysis rate inputs were calculated using the TUV radiative transfer and20

photolysis model (Madronich, 2002). The required ozone column densities to deter-
mine the spatial and temporal variation of the photolysis rates were extracted from
TOMS data (http://ozoneaq.gsfc.nasa.gov). Removal processes as dry and wet de-
position were simulated using the Zhang resistance model (Zhang et al., 2003) and
a scavenging model approach for both gases and aerosols (ENVIRON, 2011), respec-25

tively. For the gas phase chemistry the Carbon Bond (CB05) mechanism (Yarwood
et al., 2005) with 156 reactions and up to 89 species was used. Partitioning of inorganic
aerosols (sulfate, nitrate, ammonium, sodium and chloride) was performed using the
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ISORROPIA thermodynamic model (Nenes et al., 1998). Aqueous sulfate and nitrate
formation in cloud water was simulated as well using the RADM aqueous chemistry
algorithm (Chang et al., 1987).

2.2.2 Emissions

Annual total gridded anthropogenic emissions were prepared and provided by INERIS5

for the EDIII exercise, which is based on a merging process of data-bases from different
sources, i.e. TNO-MACC (Kuenen et al., 2011), EMEP (Vestreng et al., 2007), GAINS
(The Greenhouse Gas and Air Pollution Interactions and Synergies). For specific coun-
tries where TNO-MACC emissions were missing (Iceland, Liechtenstein, Malta and
Asian countries), the EMEP 0.5◦ ×0.5◦ emissions were used and re-gridded using10

adequate proxies such as “artificial land-use” and EPER (European Pollutant Emis-
sion Register) data (http://www.eea.europa.eu/) for industries. Total primary particle
emissions were made available by EMEP in two different size ranges: below 2.5 µm
(fine) and between 2.5 and 10 µm (coarse). Total emissions were later split to esti-
mate the amount of elemental carbon, and organic matter for each of the 10 SNAP15

codes (Selected Nomenclature for Air Pollution) and country. The final emission in-
ventory thus compiled consisted of 6 gas species namely methane, carbon monoxide,
ammonia, sulfur oxides, non-methane volatile organic compounds and nitrogen ox-
ides and 6 categories of particulate matter classes: fine elemental carbon (EC2.5),
coarse elemental carbon (EC10), fine primary organic material (fine POA), coarse20

primary organic material (coarse POA), fine other primary particulate material (non-
carbonaceous) and coarse other primary particulate material (non-carbonaceous). To-
tal non-methane volatile organic compounds were split for the CB05 mechanism using
the recommendations of Passant (2002). Hourly, weekly and monthly time profiles as
in the EURODELTAII exercise were applied to total annual anthropogenic emissions.25

Biogenic VOC emissions were calculated using the Model of Emissions of Gases and
Aerosols from Nature MEGANv2.1 (Guenther et al., 2012). This model is driven by
meteorological variables such as hourly temperature, solar radiation, humidity, wind
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speed, soil moisture and land cover data including leaf area index (LAI) and plant
function type (PFT) as available in the Community Land Model 4.0. 8 days average
satellite data at 0.25◦ ×0.25◦ resolution were pre-processed and made available from
the TERRA/MODIS satellite system. Sixteen plant function types including needle-
leaved evergreen, needle-leaved deciduous, broad-leaved evergreen, broad-leaved5

deciduous, grass and crop for different climatic zones were prepared for this study
at 0.25◦ ×0.25◦ resolution together with the global emission factors of α-pinene, β-
pinene, 3-carene, isoprene, limonene, 232-methylbutenol, myrcene, NOx, t-β-ocimene
and sabinene. Common BVOC species such as isoprene, terpene, sesquiterpene, xy-
lene and toluene were obtained for each hour and cell in the domain.10

2.2.3 VBS scheme

A new volatility basis set (VBS) scheme is available in the CAMx model to describe
changes in oxidation state and volatility. A total of four basis set simulates the evo-
lution of organic aerosol in the atmosphere (Koo et al., 2014). POA emissions were
split in HOA-like and BBOA-like emissions and allocated in two different basis sets.15

HOA-like emissions include emissions from all SNAP sectors except SNAP2 (non-
industrial combustion plants) and SNAP10 (agriculture) which were assigned to BBOA-
like emissions. Two other sets were used in the model to allocate secondary organic
aerosol from anthropogenic (i.e. xylene and toluene) (ASOA) and biogenic (i.e. iso-
prene, monoterpene and sesquiterpene) (BSOA) gaseous precursors. These two sets20

also allocate oxidation products of POA vapours, from each of the two primary sets
(HOA-like and BBOA-like). The 2-D volatility space retrieved by Donahue et al. (2011,
2012a, b) was used to distribute the organic molecular structures for each of the volatil-
ity bins and different sets (Table S1 in the Supplement). Five volatility bins represent the
range of semi-volatile organic compounds (SVOCs) ranging from 10−1 to 103 µgm−3

25

in saturation concentrations (C∗). Oxidation processes are modelled by shifting C∗ by
a factor of 10 in the next lower volatility bin, increasing the oxidation state and reduc-
ing the carbon number to account for fragmentation. OH reaction rates are assumed
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to be 4×10−11 cm3 molecule−1 s−1 for the reaction of semi-volatile primary vapors with
OH and 2×10−11 for further aging of ASOA and POA vapours from HOA-like emis-
sions. More details about the VBS parameterization in CAMx can be found in Koo
et al. (2014). Further aging of BSOA is not considered in this study based on previous
modelling results showing over-prediction of OA when such process is taken into ac-5

count (Lane et al., 2008; Murphy and Pandis, 2009). This implies that also further aging
of POA vapours from BBOA-like emissions was not considered since it is performed in
the same basis set. In this work we focus on the effects of a VBS framework on the total
OA fraction. Aging processes and alternative VBS implementations will be discussed
together with SOA and POA components in a following paper. Three sensitivity tests10

were performed with different assumptions on the volatility distributions (Table 1):

– S1: Primary organic aerosol was assumed to be non-volatile. Biogenic (isoprene,
monoterpenes and sesquiterpenes) and anthropogenic (xylene, toluene and other
aromatics) volatile organic compounds (VOCs) were used as precursors for sec-
ondary organic aerosol. Partitioning of condensable gases to secondary organic15

aerosol was calculated using a semi-volatile equilibrium approach (Strader, 1999).

– S2: Primary organic aerosol was assumed to be volatile and undergo chemical
oxidation. The volatility distribution estimated by Robinson et al. (2007) was ap-
plied to HOA-like and BBOA-like emissions. Emissions of intermediate volatility
organic compounds (IVOCs) were assumed to be 1.5 times those of primary or-20

ganic aerosol (POA) as suggested by Robinson et al. (2007).

– S3: Primary organic aerosol was assumed to be volatile and undergo chemical ox-
idation using the approach of Shrivastava et al. (2011) and Tsimpidi et al. (2010).
The total primary emissions are roughly 3 times higher than in S2. Different volatil-
ity distributions were applied for HOA and BBOA-like emissions. IVOCs were as-25

sumed to be 1.5 times the amount of POA. This implies that for this scenario the
SVOC+ IVOC mass added is equal to 7.5 times the initial amount of POA. This
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represents the base case scenario used to evaluate gas phase and PM2.5 model
performance.

Based on the S3 base case scenario, two other sensitivity tests were performed with
respect to emissions:

– S4: Increased BVOCs emissions by a factor of 2.5

– S5: Increased BBOA-like emissions by a factor of 2.

2.3 Statistical methods

Statistical procedures as available in the Atmospheric Model Evaluation Tool (AMET,
Apple et al., 2010) were used in this study to evaluate model performance. Daily ambi-
ent measurements of main gas phase species i.e. O3, NO2, CO, SO2 and fine particu-10

late matter (PM2.5) were extracted from the Airbase database in Europe and statistics
reported in terms of mean bias (MB), mean error (ME), mean fractional bias (MFB) and
mean fractional error (MFE):

MB =
1
n

n∑
i=1

(Mi −Oi ), (1)

ME =
1
n

n∑
i=1

(|Mi −Oi |), (2)15

MFB =
2
n

n∑
i=1

(
Mi −Oi
Mi +Oi

)
, (3)

MFE =
2
n

n∑
i=1

( |Mi −Oi |
Mi +Oi

)
. (4)

where Mi presents the modelled value, Oi the observations and n the total number of
data points. Due to the coarse grid resolution, only rural-background stations, defined
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as stations far from city sources of air pollution with pollution levels determined by the
integrated contribution from all sources upwind of the station (ETC/ACC, 2004), with
at least 80 % daily average observations available were considered for the statistical
analysis. For PM2.5 this results in 48 stations available for June 2006, 56 for January–
February 2007, 90 for September–October 2008 and 110 stations for February–5

March 2009. PM2.5 components were further evaluated for the February–March 2009
period where comprehensive high resolution AMS measurements at 11 European sites
were available, i.e., at Barcelona, Cabauw, Chilbolton, Helsinki, Hyytiälä, Mace Head,
Melpitz, Montseny, Payerne, Puy de Dôme and Vavihill (Crippa et al., 2014).

3 Results and discussions10

3.1 Model evaluation

Model performance metrics for gas phase species CO, NO2, O3 and SO2 as well as for
PM2.5 are reported in Fig. 1 and Table 2 and they refer to the base case S3. SO2 and
O3 concentrations were found to be over-predicted for all the four periods with a mean
fractional bias ranging from 14 to 36 % for SO2 and from 2 to 48 % for O3. Both O315

and SO2 over-predictions were higher during the January–February 2007 periods. The
mean error (ME) in SO2 concentrations increases at stations located close to coastal
areas, especially near large harbors such as Lisbon, Marseille, Barcelona and in East-
ern countries of the domain (Fig. S1 in the Supplement). Most of the SO2 emissions
arise from high stack point sources which have injection heights of few hundred me-20

ters. It might be that the vertical distribution of SO2 might affect the model performance
in particular near the harbors and coastal areas where ship emissions were allocated
in the second layer of the model domain (extending from ∼ 20 to 50 ma.g.l.) whereas
they can reach up to 58 m in deep draft vessels (SCG, 2004) and also undergo plume
rise. On the other hand NO2 and CO were found to be under-predicted for all the four25

periods with mean fractional bias between −54 and −28 % for NO2 and −31 and −11 %
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for CO. NO2 was particularly under-predicted during June 2006 whereas CO had the
largest bias during the September–October 2008 simulation. The under-prediction in
NO2 concentrations could be influenced by the relatively coarse resolution of the do-
main which may result in too low NOx emissions. Possible positive artefacts in the
chemiluminescence methods for measuring NO2 may also occur when NO2 is cat-5

alytically converted to NO on the molybdenum surface leading to an over-prediction
of measured NO2 concentrations (Steinbacher et al., 2007). Moreover, an evaluation
of planetary boundary layer height (PBLH) within the EDIII shows that although the
PBLH was quite well represented in general in the ECMWF IFS meteorological fields,
CAMx tends to under-estimate the night-time minima and to over-estimate some day-10

time peaks, whereas the wind speed was relatively well reproduced (Bessagnet et al.,
2014). Especially in June 2006, when the photochemical activity is higher, the general
under-prediction of NOx in the whole domain reduces the O3 titration potential dur-
ing the night time. Model performance for O3 is also strongly influenced by long-range
transport especially during the winter periods when the local chemical production of O315

is limited. MACC analysis data at 1.125◦×1.125◦ were used in this study to map O3 four-
dimensional data at the boundary of the domain. Figure S2 in the Supplement shows
the model performance at the Mace Head station located on the west coast of Ireland
for all the four periods. Especially in January–February 2007 O3 concentrations were
found to be over-predicted by about 10 to 20 ppb indicating that boundary conditions for20

O3 were probably not well represented. In June 2006 and September–October 2008
O3 was relatively well captured at Mace Head suggesting that the observed positive
bias in O3 concentrations might arise from insufficient NOx emissions to undergo titra-
tion during night time as well as not correctly represented planetary boundary layer
dynamics. In February–March 2009 the model tends to under-predict the O3 concen-25

tration at Mace Head and overall the O3 model performance shows the lowest bias
(2 %). Eventually, the under-prediction of O3 in the boundary condition may counteract
the already mentioned deficiencies related to insufficient NOx emissions. Evaluation of
O3 vertical profiles at stations located near the boundaries of the domain show that
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even though the model follows the measured O3 vertical profiles, it has difficulties to
catch the inversion between the low and middle troposphere around 2–3 kma.g.l. with
O3 concentrations under 2 km being over-predicted (Bessagnet et al., 2014). Finally,
CO was slightly under-predicted for all periods (mean fractional bias between −11 and
−31 %), with highest values during the September–October 2008 period (−31 %). The5

late summer-fall period is known to be influenced by agricultural open field burning
activities which might be missing from standard emission inventories.

Of all investigated variables, CAMx shows the best statistical performance for PM2.5.
For all four periods the acceptable model performance criteria recommended by Boy-
lan and Russell (2006) for aerosols were met (MFE≤ +75 and −60 %<MFB< +60 %).10

The fractional bias ranges from less than 1 % in September–October 2008 up to
−13 % in February–March 2009. Also the recommended model performance goals
(MFE≤ +50 and −30 %<MFB< +30 %) were met for all periods except for Jan-
uary 2007. Modelled average PM2.5 concentrations are shown in Fig. 2. A different
spatial distribution is seen for summer and winter. In June 2006 the model predicts15

higher concentrations in the southern part of the domain especially over the Mediter-
ranean Sea and North Africa (up to 35 µgm−3). On the other hand, the highest con-
centrations were predicted in the Po valley area (above 40 µgm−3) and in the southern
part of Poland during January–February 2007. During the two colder periods (2007
and 2009) elevated concentrations of around 15 µgm−3 are also visible close to urban20

areas such as Paris and Moscow. Figure 3 shows PM2.5 variations at Airbase rural-
background sites in terms of medians, 25th and 75th percentiles. In all the four periods
CAMx is able to reproduce the observed monthly variation very well with some over-
prediction occurring mainly from the 14 to the 17 January 2007 and towards the end of
2008 period. Figure 4 shows PM2.5 comparisons in terms of daily average scatterplots.25

CAMx is able to capture the concentration differences between the four periods with
lower peak concentrations of around 40 µgm−3 in June 2006 and several high pollution
events with concentrations around 60–70 µgm−3 for the other periods. For some days
in January–February 2007 CAMx strongly over-predicts PM2.5 with predicted concen-
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trations around 100 µgm−3. The latter occurs mainly at one station located in Italy i.e.
Casirate d’Adda (Airbase code IT1464A) with the highest over-prediction on the 17
January. During the 7 and 8 March 2009 CAMx strongly under-predicts at the EMEP
stations of Ayia Marina in Cypro (Airbase code CY0002R), most likely due to a Saharan
dust event not captured by the model (Fig. S3 in the Supplement). A similar situation5

was found at Viznar in Southern Spain (Airbase code ES0007R) on the 11 and 12 Oc-
tober 2008 with observed PM2.5 concentration above 100 µgm−3. This time CAMx was
able to capture the Saharan dust episode but not its magnitude (Fig. S3).

3.2 Detailed evaluation of PM2.5 components in February–March 2009

The modelled concentrations of non-refractory PM2.5 components were compared10

against aerosol mass spectrometer measurements at eleven European sites for the
February–March 2009 period (Crippa et al., 2014). Even though the AMS measures
particles with a diameter D < 1 µm, the difference between the non-refractory PM1 and
total PM2.5 mass is in general rather small as shown in Aksoyoglu et al. (2011), at
least for situations without exceedingly high air pollution and situations when sea salt15

makes large relative contribution to PM2.5. The modelled average total non-refractory
PM2.5 (sum of nitrate, sulfate, ammonium and OA) concentrations match the mea-
surements quite well with a few exceptions (Fig. 5 and Table 3). The model is able
to reproduce both high concentrations observed at the urban site Barcelona and low
ones at remote sites like Hyytiälä, Finland. Concentrations of inorganic aerosols are20

over-predicted and OA are under-predicted at most of the stations. Very similar results
were also presented by other recent studies (Knote et al., 2011). The effect of different
schemes to treat OA is discussed in Sect. 3.3. At the Cabauw site nitrate was the most
dominant species (Mensah et al., 2012). Especially at this site the model strongly over-
predicts in particular the nitrate (NO−3 ) fraction (by a factor of 3). This site is located in25

a high NH3 and NOx emission area. Emissions of NH3 mainly arise from agricultural
activities and just a minor fraction from the transportation sectors. Figure S4 in the
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Supplement shows the seasonal distribution of the annual NH3 emissions from agricul-
ture, as provided in the EDIII exercise for Switzerland. High NH3 emissions are there-
fore expected in March–April. A comparison with ammonia measurements (available
at http://www.bafu.admin.ch/luft/00585/10770/index.html?lang=de) at the Payerne site
revealed that the model predicts ammonia reasonably well in June 2006 but that there5

is a significant overestimation in March 2009 suggesting that the modelled emissions
might be too high in spring (Table S2 in the Supplement). A sensitivity test with 50 %
reduction in ammonia emissions significantly improved the modelled NO−3 concentra-
tions at almost all sites (Table S3 in the Supplement). The lowest effect was found
at Payerne, in Switzerland where reducing ammonia emissions by half led to a de-10

crease in NO−3 by about 12 %. These results are in line with previous studies suggest-
ing that aerosol formation during winter is more sensitive to NH3 emissions in most
of Europe whereas in the Swiss Plateau it is more limited by NOx emissions (Ak-
soyoglu et al., 2011). Indeed, other potential reasons for the over-prediction of NO−3
could be related to uncertainties in removal process of HNO3 as well as dry depo-15

sition velocity of NH3. Substantial over-predictions were found at the higher altitude
site of Montseny and Puy de Dôme when compared with first model layer concentra-
tions (ca. 200 and 800 ma.s.l. respectively at these sites). These sites located at about
720 and 1465 ma.s.l., are sometimes not within the PBLH during winter periods. At
the Montseny site, the relatively coarse resolution of the model could also influence20

model performance since the site is located in a complex area about 50 km north-east
of Barcelona (Pandolfi et al., 2014). Sulfate concentrations (SO2−

4 ) were over-predicted
at almost all sites and especially at Mace Head suggesting that long-range transport of
SO2−

4 might be positively biased. Modelled and observed hourly concentrations of NO−3 ,

SO2−
4 , ammonium (NH−4 ) and OA at Payerne are reported in Fig. 6 for March 2009. The25

period was characterized by south-westerly winds until the 15 March, north-easterly
winds between the 15 and 24 March, and again by south-westerly winds until the end
of the simulation (Fig. S5 in the Supplement). Temperature was rarely above 10 ◦C dur-
ing day-time and mostly around or slightly below 0 ◦C at night, with higher temperatures
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observed between the 15 and 20 March. Specific humidity was between about 4 and
5 gkg−1. Low wind speeds (below 2 ms−1) were observed during the first part of the
simulation and higher values exceeding 6 ms−1 around the 9 March and throughout
the end of the simulation. The model was able to reproduce the meteorological param-
eters very well for most of the time. The temperature was slightly under-predicted at5

both night and day-times (with a maximum of −2 ◦C) whereas both the monthly vari-
ation and the absolute values of wind speed and specific humidity were reproduced
well with a few under-predictions of high wind-speed (6 and 11 March and towards
the end of the simulation). The model was able to capture the three NO−3 and NH−4
peaks observed around the 7, 18 and 23 March with a general slight over-prediction10

throughout the whole period. Indeed, the under-prediction in temperature during day
and night time could partially explain the over-prediction of the NO−3 fraction with more
NO−3 partitioning to the aerosol phase which also apply to the other stations used in this
study. An evaluation of modelled temperature at the European scale for the February–
March 2009 period confirmed that the model systematically under-predicted the 2 m15

surface temperature (Bessagnet et al., 2014). All the inorganic components were over-
predicted during the first four days of March 2009 with a peak around the 3 March. The
modelled (PBLH) is reported in Fig. S6 in the Supplement together with the convec-
tive boundary layer (CBL) height estimated from Payerne sounding data. The model
exhibits very low PBLH during the night until the 5 March. In contrast, from the 5 March20

until the 11 March PBLH at night was relatively higher, around a few hundred meters.
At the same time the NO−3 concentration was reproduced more closely, with the peak
around 7 March being under-estimated. From the 12 until the 19 March the modelled
PBLH again showed very low values at night with the NO−3 concentration being slightly
over-predicted. This might suggests that a too shallow PBLH at night could be the rea-25

son for such over-prediction. Although the temporal variation was captured, concen-
trations of OA were under-predicted throughout all the simulation (4.1 and 1.8 µgm−3

observed and modelled average concentrations). Analysis of the OA fraction is dis-
cussed in the next section.
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3.3 Organic aerosols

3.3.1 Sensitivity of OA to the VBS scheme

In this section, effects of different parameterizations of the organic aerosol module on
the modelled OA concentrations are discussed. The scatter plots in Fig. 7 show a com-
parison of daily average OA concentrations against the same AMS measurements as5

in Table 3 during February–March 2009. Statistics for each scenario are reported in
Table 4. When the semi-volatile dynamics of primary organic aerosol is not taken into
account (scenario S1), the model under-predicts OA concentrations (MFB: −66 %) with
an observed and modelled average concentrations of 2.96 and 1.18 µgm−3 respec-
tively. In the S2 scenario POA emissions are allowed to evaporate following the volatil-10

ity distribution proposed by Robinson et al. (2007) and to undergo chemical oxidation.
In this case modelled OA concentrations decrease by about 43 % with respect to S1,
predicting an average OA concentration of 0.67 µgm−3. On the other hand, the S3 sce-
nario improves the OA model performance increasing the OA concentrations by about
47 % with respect to S1. Predicted OA concentrations are found to be 1.73 µgm−3 on15

average (MFB: −47 %). Similar behavior during winter periods was also shown in re-
cent studies where the same VBS scheme was applied in the US domain (Koo et al.,
2014). Figure 8 shows the modelled total OA concentration over Europe using S1, S2
and S3 scenarios. The model predicts high OA values in the Eastern part of the do-
main as well as over Portugal, France and the Po Valley (S3). Some hot-spots around20

large urban areas are also visible, i.e., Paris and Moscow. Higher OA concentrations in
the southern part of the domain are observed in the S3 case, likely because of higher
temperature and more OH radicals available in that part of the domain leading to an
increase in the total organic mass upon reaction with organic vapours. This is in line
with the results of Fountoukis et al. (2014) for the February–March 2009 period even25

though their study predicts lower concentration over the Po valley. Even though model
input data and parameterizations are not the same, the S3 case in particularly, uses
a very similar volatility distribution as in Fountoukis et al. (2014). Our study predicts
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relatively lower OA concentrations (MFB: −0.47, MFE: 0.79) compared to those re-
ported by Fountoukis et al. (2014) (MFB: 0.02, MFE: 0.68) for February–March 2009.
Unlike Fountoukis et al. (2014) our study does not include fire emissions and ma-
rine organic aerosol which may partially explain the differences. Figure 9 shows hourly
modelled and observed OA concentration at Payerne for March 2009 and June 2006.5

In March 2009 S2 results are lower than those in S1 whereas OA concentrations in S3
case are higher (see Fig. S8 and Table S4 in the Supplement for average concentra-
tions and statistics). In June 2006, the OA mass in S2 is lower than those in S1 while S3
predicts similar concentrations as the S1 scenario (2.43 and 2.56 µgm−3, respectively,
Fig. S9 and Table S5 in the Supplement). It has to be noted that the S1 scenario pre-10

dicts slightly lower OA concentration for June 2006 in Payerne with respect to our pre-
vious application (Aksoyoglu et al., 2011), mainly because of a different biogenic model
being used which yields lower monoterpene and sesquiterpene emissions. Since both
BVOCs and BBOA-like emissions are highly uncertain, sensitivity tests with increased
biogenic and anthropogenic emissions were performed and results discussed in the15

next section (Sect. 3.3.2).

3.3.2 Sensitivity of OA to BBOA-like and BVOC emissions

Emissions of BVOCs compounds (i.e. monoterpenes, isoprene and sesquiterpenes)
were doubled in scenario S4, whilst primary organic aerosol emissions from SNAP2
and SNAP10 (BBOA-like) were doubled in scenarios S5, with other emissions and20

processes represented as in S3. Figure 10 shows modelled and observed OA daily
average concentrations for the S3, S4 and S5 scenarios across the sites. Statistics for
each scenario are reported in Table 5. Increasing biogenic emissions by a factor of two
during February–March 2009 resulted in almost no change in the predicted total OA
(1.73 and 1.78 µgm−3 for the S3 and S4 scenarios, respectively). On the other hand,25

doubling the BBOA-like emissions (S5) during the same period strongly increased the
predicted OA mass (up to 2.84 µgm−3 on average). As a result the mean fractional bias
decreased further, from −47 to −12 % averaged across the sites. This could eventually
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confirm other studies where substantial under-predictions in residential wood burning
emissions were underlined (e.g., Bergström et al., 2012). A few points above the 2 : 1
lines in S5 mainly belong to the sites of Montseny, Puy de Dôme and Helsinki. During
winter periods, it is likely that elevated stations such Montseny and Puy de Dôme are
most of the time above the PBLH, as suggested by previous studies for Puy de Dôme5

(Freney et al., 2011), whereas model concentrations are extracted from the first layer
of the model. In Helsinki, BBOA emissions seem to be overestimated or the dispersion
underestimated in the model.

Comparison with a warmer period in June 2006 is reported as well for Payerne
where AMS measurements were also available (Fig. 11). In February–March 200910

increasing BBOA-like emissions (S5) reduced the fractional bias from −85 % in S3 to
−37 % (Table S4) with an over-prediction occurring during 1–5 of March (Fig. 11, upper
panel). As already discussed in Sect. 3.2, it is likely that the vertical mixing processes
were not correctly represented by the model since also the inorganic components were
over-predicted for the same period. Almost no change in the predicted OA mass was15

found when biogenic emissions were doubled (scenario S4) (Fig. 11, upper panel)
due to lower BVOCs emission during winter periods. Increasing BVOCs emissions in
June 2006 increased the predicted OA mass at Payerne site especially during the
12–16 June and towards the end of the simulation period, where higher concentra-
tions and temperature (Fig. S7 in the Supplement) were also observed (Fig. 11, lower20

panel). In contrast, similar OA concentrations were predicted in Payerne for S3 and
S5 during June 2006 (with averages of 2.43 and 2.75 µgm−3 respectively). This is in
line with a very recent source apportionment study based on ACSM (aerosol chemical
speciation monitor) measurements performed in Zürich for 13 months (February 2011–
February 2012) which revealed substantial differences between the winter (February–25

March) and summer (June–August) f44/f43 space (organic mass fraction measured
at mass to charge ratio 44 and 43) indicating that summer OOA (oxygenated or-
ganic aerosol) is strongly influenced by biogenic emission and winter OOA by biomass
burning emission (Canonaco et al., 2015). Increased OA concentrations at Payerne
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in June 2006 with increased biogenic emissions were also found in other modelling
studies. Bergström et al. (2012) used the VBS framework with different assumptions
regarding aging processes and compared the model results for June 2006 with the
AMS results at Payerne. In their study the total OA was found to be under-predicted
with lower bias observed when aging processes were taken into account and biogenic5

emissions were increased by a factor of 3. Even though their model differs from ours in
various aspects (number of volatility bins, aging processes parameterization and input
data) in two of their scenario without aging of biogenic SOA Bergström et al. (2012)
predicted an average OA concentration ranging from 2.6 to 3.4 µgm−3 which is similar
to our base case S3 and S4 scenario (2.43 and 3.4 µgm−3, respectively, Table S5).10

4 Conclusions

A modelling study using the regional air quality model CAMx with VBS (Volatility Basis
Set) scheme was performed for the first time in Europe within the EURODELTA-III
model intercomparison exercise. An evaluation for the main gas phase species and
PM2.5 for four different periods was performed using the European air quality database15

Airbase as well as AMS (Aerosol Mass Spectrometer) measurements. The period in
February–March 2009 was further analyzed in more detail using different assumptions
regarding the volatility of emitted organic aerosol and emissions of precursor. The main
findings of this study are summarized below:

– Total PM2.5 was modelled very well. The concentration gradients between the20

four investigated episodes were captured by the model. A few episodes of over-
prediction for PM2.5 were found in the Po valley region. Some days with high PM2.5
loads for stations close to the southern border of the domain were not captured by
the model, probably because of missing representation of Saharan dust events.

– In general, for all the four periods, the model under-predicted NO2 and CO con-25

centrations especially during winter periods likely because of insufficient emis-
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sions. On the other hand, O3 was found to be over-predicted likely because of
insufficient NOx to undergo titration during night-time chemistry or not well cap-
tured vertical mixing processes and concentrations at the boundaries. SO2 was
over-predicted especially near coastal areas, presumably mainly because of un-
certainties in ships stack height representation in the model, and in the eastern5

part of the domain where larger emissions are occurring.

– Comparisons with AMS measurements for the February–March 2009 period sug-
gested that the model is able to capture the total non-refractory PM1 mass. How-
ever, the inorganic fraction, especially NO−3 , being over-predicted and the OA
under-predicted. Sensitivity tests with reduced NH3 emissions generally reduced10

the positive bias in NO−3 suggesting potential uncertainties in NH3 emissions and
their seasonal variability.

– Including evaporation and oxidation processes of primary organic particles with
the volatility distribution proposed by Robinson et al. (2007) lowered the modelled
OA mass both in winter and summer periods. On the other hand, the adjustment15

of the scheme by Robinson et al. (2007) suggested by Shrivastava et al. (2011)
and Tsimpidi et al. (2010) brings model and observation into better agreement by
reducing the negative bias for OA by about 29 % (MFB) in winter.

– Sensitivity tests with increased BVOCs and BBOA-like emissions suggested that
emissions from residential heating represent an important contributor to total OA20

during winter periods (February–March 2009). The model under-predicted the
winter OA concentrations (MFB −47 % for base case S3) more than gas phase
pollutants e.g. NO2 (Table 2). Eventually, increasing BBOA-like emissions by a fac-
tor of 2 brought model and observation to a reasonably good agreement even
though the model still under-predicts the OA fraction (−12 % MFB). This under-25

lines the necessity to better constrain emission inventories with a focus on resi-
dential heating. Also the implementation of the VBS scheme for domestic wood
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burning, which substantially influences both the primary and secondary organic
aerosol, should be evaluated.

– A summer period was simulated as well and results were compared at Payerne.
In June 2006, the current VBS implementation could not explain the discrepancy
between modelled and observed OA. During this period the difference between5

the model and measurements is likely to be related to BVOCs emissions which
are uncertain and difficult to constrain with measurements. In this case the model
was sensitive to an increase in biogenic emissions especially during periods with
higher temperature and OA concentrations. The latter could confirm the impor-
tance of BVOC precursors in summer in Payerne and the way to correctly repre-10

sent their evolution in the atmosphere.

The Supplement related to this article is available online at
doi:10.5194/acpd-15-35645-2015-supplement.
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Table 1. Volatility distributions used for different scenarios.

Scenarios POA emission
sources

Emission fraction for volatility bin with C∗ of

0 1 10 100 1000

Scenario1
(non-volatile
CAMxv5.40)

HOA-like
BBOA-like

1.00
1.00

– – – –

Scenario2
(Robinson et al.,
2007)

HOA-like
BBOA-like

0.09
0.09

0.09
0.09

0.14
0.14

0.18
0.18

0.5
0.5

Scenario3
(Tsimpidi et al.,
2010 and
Shrivastava et al.,
2011)

HOA-like
BBOA-like

0.40
0.27

0.26
0.27

0.40
0.42

0.51
0.54

1.43
1.50
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Table 2. Model gas phase and PM2.5 performance for the EDIII field campaigns (base case
S3).

Species Number of
sites

Observed
mean
(ppb)
(µgm−3 for
PM2.5)

Modelled
mean
(ppb)
(µgm−3 for
PM2.5)

MB
(ppb)
(µgm−3 for
PM2.5)

ME
(ppb)
(µgm−3 for
PM2.5)

MFB
[–]

MFE
[–]

Jun 2006
CO 36 192.0 158.0 −34.20 80.70 −0.12 0.36
NO2 320 4.1 2.3 −1.87 2.24 −0.54 0.68
O3 460 42.3 51.2 8.93 10.80 0.21 0.24
PM2.5 48 12.0 11.7 −0.30 4.46 −0.07 0.39
SO2 263 1.0 1.2 0.20 0.74 0.14 0.67

Jan–Feb 2007
CO 45 248.0 191.0 −57.80 107.00 −0.11 0.37
NO2 337 6.5 4.4 −2.17 3.16 −0.28 0.57
O3 455 23.5 35.8 12.30 12.60 0.48 0.49
PM2.5 56 11.7 12.8 1.04 6.06 −0.04 0.56
SO2 271 1.3 1.7 0.38 1.09 0.36 0.75

Sep–Oct 2008
CO 53 208.0 136.0 −72.00 91.40 −0.31 0.48
NO2 370 5.3 3.7 −1.67 2.50 −0.28 0.56
O3 465 24.3 32.5 8.17 9.58 0.32 0.37
PM2.5 90 13.0 14.1 1.03 5.69 < 0.01 0.46
SO2 256 0.9 1.1 0.20 0.76 0.25 0.74

Feb–Mar 2009
CO 57 262.0 170.0 −91.60 119.00 −0.26 0.48
NO2 380 6.0 3.9 −2.03 2.78 −0.33 0.56
O3 488 32.7 33.0 0.22 7.14 0.02 0.23
PM2.5 110 15.1 13.0 −2.13 6.37 −0.13 0.50
SO2 257 1.0 1.3 0.31 0.86 0.23 0.76
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Table 3. Statistical analysis of nitrate, ammonium, sulfate and organic aerosol in base case
(S3) for February–March 2009 at different AMS sites.

Site Mean observed
(µgm−3)

Mean modelled
(µgm−3)

MB
µgm−3

ME
µgm−3

MFB
[–]

MFE
[–]

NO−3

Barcelona 3.6 5.8 2.19 3.98 0.35 0.98
Cabauw 2.2 6.7 4.49 4.58 0.85 1.01
Chilbolton 2.7 4.0 1.33 2.21 0.02 0.76
Helsinki 1.0 1.9 0.93 1.30 0.29 0.92
Hyytiälä 0.2 1.0 0.75 0.83 0.21 1.09
Mace Head 0.6 1.7 1.11 1.12 0.14 0.70
Melpitz 3.1 4.3 1.25 2.41 0.35 0.71
Montseny 3.1 5.9 2.83 4.31 0.38 1.00
Payerne 3.9 5.7 1.81 2.83 0.34 0.61
Puy de Dôme 0.9 2.7 1.81 2.17 1.13 1.30
Vavihill 2.8 3.7 0.89 2.17 0.14 0.78

NH−4

Barcelona 1.6 2.5 0.92 1.41 0.42 0.71
Cabauw 1.0 2.7 1.73 1.75 0.95 0.97
Chilbolton 1.3 2.0 0.68 1.02 0.39 0.61
Helsinki 0.8 1.3 0.52 0.59 0.51 0.60
Hyytiälä 0.4 0.8 0.43 0.48 0.55 0.70
Melpitz 1.4 2.1 0.72 1.11 0.45 0.69
Montseny 1.7 2.6 0.92 1.58 0.39 0.74
Payerne 1.7 2.5 0.80 1.15 0.36 0.56
Puy de Dôme 0.7 1.2 0.51 0.87 0.83 1.07
Vavihill 1.6 1.9 0.38 0.90 0.17 0.56

SO2−
4

Barcelona 2.7 2.3 −0.44 1.25 −0.19 0.48
Cabauw 1.0 2.1 1.13 1.34 0.73 0.85
Chilbolton 1.3 2.2 0.91 1.33 0.45 0.70
Helsinki 2.4 2.2 −0.24 0.92 −0.04 0.43
Hyytiälä 1.4 1.7 0.26 0.73 0.09 0.58
Mace Head 0.4 1.2 0.83 0.89 1.04 1.12
Melpitz 1.1 2.2 1.15 1.40 0.54 0.76
Montseny 1.4 2.3 0.97 1.19 0.55 0.64
Payerne 1.1 2.1 1.06 1.16 0.62 0.70
Puy de Dôme 0.4 1.1 0.77 0.82 1.14 1.19
Vavihill 1.6 2.3 0.73 1.05 0.18 0.54

OA

Barcelona 8.2 3.1 −5.11 5.15 −0.80 0.82
Cabauw 1.2 1.1 −0.14 0.53 −0.13 0.50
Chilbolton 2.4 0.7 −1.70 1.70 −1.09 1.10
Helsinki 2.7 2.9 0.26 1.64 0.08 0.62
Hyytiälä 1.3 1.0 −0.28 0.52 −0.48 0.60
Mace Head 0.8 0.4 −0.38 0.43 −0.29 0.70
Melpitz 1.5 0.5 −0.95 0.98 −0.94 0.97
Montseny 3.1 3.9 0.88 1.88 0.31 0.57
Payerne 4.1 1.8 −2.33 2.43 −0.85 0.90
Puy de Dôme 0.6 1.4 0.78 0.96 0.68 0.91
Vavihill 3.9 1.4 −2.53 2.53 −1.04 1.04
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Table 4. Statistical analysis of OA for S1, S2 and S3 scenarios for the 11 AMS sites for
February–March 2009.

Scenario Mean
observed
OA
(µgm−3)

Mean
modelled OA
(µgm3)

MB
(µgm−3)

ME
(µgm−3)

MFB
[–]

MFE
[–]

S1 2.96 1.18 −1.78 2.04 −0.66 0.88
S2 2.96 0.67 −2.29 2.35 −1.08 1.19
S3
(base case)

2.96 1.73 −1.23 1.83 −0.47 0.79
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Table 5. Statistical analysis of OA for S3, S4 and S5 scenarios for the 11 AMS sites for
February–March 2009.

Scenario Mean
observed
OA
(µgm−3)

Mean
modelled OA
(µgm3)

MB
(µgm−3)

ME
(µgm−3)

MFB
[–]

MFE
[–]

S3
(base case)

2.96 1.73 −1.23 1.83 −0.47 0.79

S4 2.96 1.78 −1.17 1.82 −0.46 0.78
S5 2.96 2.84 −0.11 1.91 −0.12 0.69
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Figure 1. Observed and modelled means for NO2, O3, SO2, CO and PM2.5 for Airbase rural
background sites with at least 80 % of data available for June 2006, January–February 2007,
September–October 2008 and February–March 2009. Number of sites is reported in Table 2.
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Figure 2. Modelled average PM2.5 concentrations for June 2006, January–February 2007,
September–October 2008 and February–March 2009 (top to bottom) based on the base case
(S3). Note that the color scale was limited to maximum of 40 µgm−3 to facilitate comparison of
the panels.
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Figure 3. Comparison of modelled (red) and measured (grey) PM2.5 concentrations at AirBase
rural background sites. The extent of the bars indicates the 25th and 75th percentile. The black
and red lines are observed and modelled median, respectively. The numbers of sites are 48,
58, 90, and 110 from top to down. Based on base case (S3).
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PM2.5 for June 2006.
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PM2.5 for January−February 2007.
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PM2.5 for September−October 2008.
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PM2.5 for February−March 2009.
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Figure 4. Daily average scatter plots for PM2.5 at AirBase rural background sites. Solid lines
indicate the 1 : 1 line. Dotted lines are the 1 : 2 and 2 : 1 lines. Based on base case (S3).
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Figure 5. Comparison of observed (OBS) non-refractory PM1 and modelled (MOD) non-
refractory PM2.5 at 10 AMS sites in Europe. Mace head is reported only in Table 3 since the
ammonium component is not available.
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Figure 6. Comparison of observed and modelled nitrate, ammonium, sulfate and organic
aerosol at Payerne for March 2009.
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Scenatio S1: OA from 20090225 to 20090326
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Scenatio S2: OA from 20090225 to 20090326
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Scenatio S3: OA from 20090225 to 20090326
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Figure 7. OA daily average scatter plots for S1, S2 and S3 scenarios for February–March 2009
for stations in Table 3. Solid lines indicate the 1 : 1 line. Dotted lines are the 1 : 2 and 2 : 1
lines. Boxplots indicate medians, 5th, 25th, 75th and 95th quantiles for observations (black)
and sensitivity tests (red). The crosses represent the arithmetic means.
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Figure 8. Predicted OA concentrations over Europe for the S1, S2 and S3 scenario in
February–March 2009. Note that the color scale was limited to maximum of 5 µgm−3 to fa-
cilitate comparison of the panels.
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Figure 9. Predicted and observed total OA for scenarios S1, S2 and S3 in March 2009 (upper
panel) and June 2006 (lower panel) at Payerne.
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Scenatio S3: OA from 20090225 to 20090326
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Scenatio S4: OA from 20090225 to 20090326
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Scenatio S5: OA from 20090225 to 20090326
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Figure 10. OA daily average scatter plots for S3, S4 and S5 scenarios for February–March 2009
for stations in Table 3. Solid lines indicate the 1 : 1 line. Dotted lines are the 1 : 2 and 2 : 1
lines. Boxplots indicate medians, 5th, 25th, 75th and 95th quantiles for observations (black)
and sensitivity tests (red). The crosses represent the arithmetic means.
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Figure 11. Predicted and observed total OA for scenarios S3, S4 and S5 in March 2009 (upper
panel) and June 2006 (lower panel) at Payerne.
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